
A NOTE ON THE SECURITY OF THE BITVM3 GARBLING
SCHEME

A. FUTORANSKY, G. LAROTONDA, AND F. BARBARA

Abstract. We provide minimal counterexamples for the security of the BitVM3

garbling scheme presented in [Lin25]: our attack allows the evaluator to forge input

and output wires. Then we use the same idea to exhibit an attack on the forward

label propagation garbling scheme proposed in [FDZ25]. In both cases, the authen-

ticity property of the garbling scheme is broken.

Keywords: authenticity, BitVM3, garbling scheme, RSA

1. RSA garbling

In the BitVM3 paper [Lin25] a garbling scheme based on RSA encryption is intro-

duced, where the authenticity of the scheme is assumed to follow from the hidden

order of the group. In this short note we show that this assumption is wrong and we

provide minimal counterexamples1.

Remark 1 (Coprimes and the extended Euclidean algorithm). The BitVM3 scheme

is based on modular arithmetic in ZN : the garbler P (he) chooses N = PQ =

(2p + 1)(2q + 1) with secret safe primes p, q. Recovering x from xa is unfeasible for

the evaluator E (she), who doesn’t know φ(N) = 4pq and cannot compute exponent

inverses. The key idea of our attack is as follows: recovering x from xa or from xb is

unfeasible for the evaluator. But when a, b are coprime it is feasible for the evaluator

to find integers k1, k2 such that ak1 + bk2 = 1 by means of the extended Euclidean

algorithm, which does not require knowledge of φ(N). Then knowing xa, xb allows

her to learn x simply by calculating

x = xk1a+k2b = (xa)k1(xb)k2 .

1.1. BitVM3 notation and rules. In the BitVM3 scheme, the wires are com-

puted using 5 public exponents e, e1, e2, e3, e4, invertible modulo φ(N); small primes

(3,5,7,11,13) are suggested. Denoting di their inverses, it is also assumed that e1e4d2−
e3 is invertible (mod pq). Following the notation in [Lin25], let us indicate wires with

(A. Futoransky, F. Barbara. futo@fairgate.io, fadi.barbara@fairgate.io) Fairgate Labs.
(G. Larotonda. glaroton@dm.uba.ar) FCEyN-UBA & CONICET.
1While finishing this note and the PoC, we learned that L. Eagen published a somewhat related
attack to the BitVM3 garbling scheme in https://hackmd.io/@liameagen/bitvm3-garbling-note

1

https://hackmd.io/@liameagen/bitvm3-garbling-note


2 A NOTE ON THE SECURITY OF THE BITVM3 GARBLING SCHEME

small letters a, b, c, d etc. We use a0 to indicate a label in ZN carrying the bit 0 in

wire a, and we use a1 to indicate the label of the same wire carrying the bit 1. The

rules for an AND gate are as follows: here a, b are the input wires and x is the output

wire.

(1)

x0 = ae0 · b
e1
0 (mod N)

x0 = ae0 · b
e2
1 (mod N)

x0 = ae1 · b
e3
0 (mod N)

x1 = ae1 · b
e4
1 (mod N).

In what follows, let us agree to call a in the table above the left input wire (all powers

equal to e) and b the right input wire.

From this rules, knowing the labels x0, x1, the prover P who knows φ(N), is able to

compute a0, a1, b0, b1 to move backward in the garbled circuit label definition. But

if two gates are fed from the same input wire b (fan-out> 1), since the y0, y1 of the

second gate are different, this leads to different values b′0, b
′
1 which is inconsistent. See

Figure 1 below: b0, b1 produced from gate X (backwards from x0, x1 and equations)

will be different to b′0, b
′
1 produced from gate Y (backwards from y0, y1).

To remedy this, the solution proposed in BitVM3 is to make the garbler compute

adaptors T as follows

Tb′,0 =
b′0
b0
, Tb′,1 =

b′1
b1

(mod N)

and make the prover share also these adaptors Tb′,i to the evaluator as circuit material

on the setup. Please note that the adaptors are invertible modulo N , so knowing b0

is equivalent for the evaluator to know b′0, and likewise with b1.

Then, the evaluator, obtaining for instance the label b0 for wire b upon her evaluation,

uses it (and the label from wire a) to produce the output of gate X. But instead of

using it to evaluate Y , she first multiplies by the corresponding adaptor, to obtain

b′0 := b0 · Tb′,0 (mod N)

and uses this nonce to evaluate Y (and the one from wire c). In case she has b1, she

uses the other adaptor to obtain b′1.

2. The attack on BitVM3

Now we get into the details of the implementation of our attack. We will construct

a minimal 2-gate, 3-inputs circuit that forces the garbler into reusing one of the

input wires. This results in the use of adaptors. We will exploit this and the fact

that combinations of RSA encryptions (induced by the adaptors) makes possible to



A NOTE ON THE SECURITY OF THE BITVM3 GARBLING SCHEME 3

AND

X

AND

Y

wa

wb′

wb = wb′

wc

wx

wy

Figure 1. Minimal circuit with two parallel AND gates reusing an
input wire wb = wb′ .

recover messages. This will enable the evaluator to forge one input and one output

wire of the circuit.

Assume the circuit is as in Figure 1. We set the rules for X and Y as follows (we’ve

chosen the reused wire to be on the right in gate X and to be on the left on gate Y ):

x0 = ae0 · (b′0)e1 (mod N)

x0 = ae0 · (b′1)e2 (mod N)

x0 = ae1 · (b′0)e3 (mod N)

x1 = ae1 · (b′1)e4 (mod N).

y0 = be0 · c
e1
0 (mod N)

y0 = be0 · c
e2
1 (mod N)

y0 = be1 · c
e3
0 (mod N)

y1 = be1 · c
e4
1 (mod N).

In this setting, we assume at this stage the evaluator has labels a0, b0, c0, and learns

b′0 using the adapter. Evaluating gate X, she gets x0. From gate Y she gets y0,

the legitimate output corresponding to both bits equal to 0. Now the evaluator is in

possession of

Tb′,0, Tb′,1, a0, b0, c0, b
′
0.

Lemma 2. In the circuit of Figure 1, an evaluator knowing input labels a0, b0, c0 is

able to forge input label b1.

Proof. From the first gate X rules

ae0 · (b′0)e1 = x0 = ae0 · (b′1)e2 (mod N),

the evaluator learns (b′1)
e2 = (b′0)

e1 (mod N), and by means of the adaptor, she learns

be21 . From gate Y rules

be1 · c
e3
0 = y0 = be0 · c

e1
0 (mod N),

she learns

be1 = be0 · c
e1−e3
0 (mod N).

She now looks up for k1, k2 such that k1e+ k2e2 = 1, and from this she learns

b1 = (be1)
k1 · (be21 )k2 (mod N). □



4 A NOTE ON THE SECURITY OF THE BITVM3 GARBLING SCHEME

Corollary 3. In the same setting as the previous lemma, the evaluator is able to forge

the output label x1.

Proof. From the last two rules for gate X it follows that

x1 = x0 · (b′1)e4 · (b′0)−e3 (mod N). □

Remark 4. Most non-trivial circuits will suffer from many similar exponent collisions.

Trying to transform the topology to avoid this type of attack is not possible.

3. The attack on the forward label propagation scheme

In this scheme proposed in [FDZ25], the rules relating input/outputs of a gate are

the same as in (1) but now the garbler P first chooses the input labels of the circuit

and propagates them forward according to these rules, using output adaptors specific

for each type of gate. We provide a minimal example breaking security, following the

same ideas that in the previous section, and refer the reader to the mentioned paper

for details: we construct a similar attack, specific to this garbling scheme.

AND

X

AND

Y

wa

wb

wb

wc

wx

wy

Figure 2. Minimal circuit with two parallel AND gates reusing input
wire wb.

x0 = ae0 · b
e1
0 (mod N)

x1 = ae0 · b
e2
1 (mod N)

x2 = ae1 · b
e3
0 (mod N)

x3 = ae1 · b
e4
1 (mod N).

y0 = be0 · c
e1
0 (mod N)

y1 = be0 · c
e2
1 (mod N)

y2 = be1 · c
e3
0 (mod N)

y3 = be1 · c
e4
1 (mod N).

These are the rules for gates X, Y , and what follows are the adaptors for the respective

AND gate outputs (Table 3 in [FDZ25]):

A1 =
x0

x1

, A2 =
x0

x2

, A′
1 =

y0
y1
, A′

2 =
y0
y2
.

These are passed from garbler to evaluator as circuit material. Assume that the

evaluator gets labels a0, b0, c0. The legitimate output of our minimal example is then

x0, y0.



A NOTE ON THE SECURITY OF THE BITVM3 GARBLING SCHEME 5

From the rules of gate X, it follows that

ae0 · b
e1
0 = x0 = A1 · x1 = A1 · ae0 · b

e2
1 .

Hence our evaluator gets her hands on be21 = A−1
1 · be10 . From the rules of gate Y , it

follows that

be0 · c
e1
0 = y0 = A′

2y2 = A′
2b

e
1 · c

e3
0 ,

and our evaluator now has

be1 = (A′
2)

−1 · be0 · c
e1−e3
0 .

Repeating the argument of Lemma 2, we have proved the following:

Corollary 5. An evaluator holding input labels a0, b0, c0 of circuit in Figure 2 is able

to forge input label b1.

4. Regarding linear adaptors in the original BitVM3 scheme

Now we explore an alternative adaptor method suggested by Robin Linus, where each

label’s adaptor is an affine function:

b′0 = b0T0,1 + T0,2, b′1 = b1T1,1 + T1,2 (mod N).

In this case, we construct a new two ANDs example, with the reused wire on the left

input of both gates. Resulting in the following equations:

x0 = (b′0)
e · ae10 (mod N)

x0 = (b′0)
e · ae21 (mod N)

x0 = (b′1)
e · ae30 (mod N)

x1 = (b′1)
e · ae41 (mod N).

y0 = be0 · c
e1
0 (mod N)

y0 = be0 · c
e2
1 (mod N)

y0 = be1 · c
e3
0 (mod N)

y1 = be1 · c
e4
1 (mod N).

The known labels for the evaluator are again a0, b0, c0, with legitimate outputs x0, y0.

AND

X

AND

Y

wa

wb′

wb = wb′

wc

wx

wy

Figure 3. Two AND gates reusing an input wire wb = wb′ .

Theorem 6. Given the input labels a0, b0, c0 in the circuit of Figure 3, the evaluator

can forge the input label b1.



6 A NOTE ON THE SECURITY OF THE BITVM3 GARBLING SCHEME

Proof. From the rules of gate X the evaluator gets (b′1)
e = x0 · a−e3

0 , and likewise she

gets be1 from the rules of gate Y . Using the adaptors she knows

(b′1)
e = (b1T1,1 + T1,2)

e (mod N)

So simply put, the task is to recover b1 (mod N) from known h1, h2 where

h1 = be1 h2 = (αb1 + β)e

where α = T1,1, β = T1,2, e are known to the evaluator. Name

z = αβ−1b1, c1 = αeβ−eh1, c2 = β−eh2.

Note that the previous problem is equivalent to recover z from

c1 = ze and c2 = (z + 1)e (mod N).

This can be done following the guidelines of [CFPR89]: the polynomials a(t) = te−c1

and b(t) = (t+1)e − c2 have the same degree and a common root t = z. By means of

the Euclidean algorithm for polynomials she can find polynomials f, h ∈ ZN [t] such

that

(2) g(t) = f(t)(te − c1) + h(t)((t+ 1)e − c2)),

where g is the g.c.d. of our polyomials, and must be a monic polynomial. It is clear

that t− z divides g(t), but in fact g(t) = t− z (except possibly for a finite number of

values of z, see Remark 7 below). Evaluating (2) in t = 0 she gets

−z = 0− z = −f(0) · c1 + h(0) · (1− c2) (mod N),

recovering z and learning b1. □

Remark 7. Please note that although there might a finite number of possible excep-

tions corresponding to other common roots in some extension field of ZP , as suggested

in the footnote of page 2 of [CFPR89], this algorithm returns a linear polynomial with

very high probability.

References

[CFPR89] Don Coppersmith, Matthew Franklin, Jacques Patarin, Michael Reitert. Low-

Exponent RSA with Related Messages. Proc. of Eurocrypt’96, LNCS 1070, pp. 1-9.

https://link.springer.com/content/pdf/10.1007/3-540-68339-9 1.pdf

[FDZ25] Alva Fu, Stephen Duan, Ethan Zhu. Instantiating BitVM3 from Label Forward Propaga-

tion, https://www.goat.network/bitvm3-label-forward-propagation

[Lin25] Robin Linus. BitVM3: Efficient Computation on Bitcoin, https://bitvm.org/bitvm3.pdf

https://link.springer.com/content/pdf/10.1007/3-540-68339-9_1.pdf
https://www.goat.network/bitvm3-label-forward-propagation
https://bitvm.org/bitvm3.pdf

	1. RSA garbling
	1.1. BitVM3 notation and rules

	2. The attack on BitVM3
	3. The attack on the forward label propagation scheme
	4. Regarding linear adaptors in the original BitVM3 scheme
	References

