
Fairgate White Paper

Introduction
FairRISCV

CPU Design
FairRiscV running Virtual Machines

FairTrade
Case studies

Vulnerability Vault
MEV Matcher
Multiparty Cryptocurrency Custody

Introduction

Secure multiparty computation (MPC) is a subfield of cryptography that enables multiple
parties to compute a function on their private inputs without revealing anything about such
inputs beyond what can be inferred from the function's output. This is achieved through the
use of cryptographic protocols that ensure the privacy and security of each party's input.
Recent advances in MPC have focused on improving e�ciency and scalability, as well as

expanding the set of functions that can be securely computed. Fairgate's flagship technology
is the FairRISCV processor. FairRISCV is a RISC-V processor that can run o�-the-shelf
binaries e�ciently in a Two-Party MPC protocol with semi-honest guarantees. The FairRISCV
processor not only can run finite programs that compute math functions, such as performing
secret vote counting or deciding on Vickrey auctions, but can also execute continuous
programs that produce many intermediate outputs, such as distributed consensus systems
requiring private inputs (i.e fair ordering of transactions).

By leveraging a standard CPU core implemented as an MPC-circuit, we can run a variety
of protocols using a proven toolchain. Some examples are fair trades using
smart-contracts, privacy preserving retrieval of information, private AI training and
model evaluation, private credentials, decentralized identity, and more. The use cases for
multiparty computation are endless, and MPC is expected to grow in the forthcoming
years. A recent public comment by Dan Boneh sheds light on what’s coming:

“Right now the blockchain is focused on getting snarks to work fast. Don't be
surprised that if in a year or two all of a sudden the whole blockchain ecosystem is
going to focus on MPC and we're going to see massive massive investments in
getting MPC to run on massive computations of this style for these kind of
problems"

Gartner also foresees the imminent need of MPC in large corporations:

“..By 2025, 60% of large organizations will use at least one PEC
(privacy-enhancing computation) technique in analytics, business intelligence
and/or cloud computing..” -Gartner Strategic Planning Assumption [1]

This forecast has been growing, from a 50% predicted in 2020 [2], to 60%.

There are many problems where the FairRISCV can be a key part of an innovative
solution, these include:

Secure data analysis: In scenarios where multiple parties have sensitive data that needs
to be analyzed, the FairRISCV processor can be used to perform the analysis without
revealing the underlying data to any party. This allows for secure collaboration on data
analysis tasks, such as in medical research or financial analysis.

Fraud detection: The FairRISCV processor can be used to detect fraudulent behavior by
combining information from multiple parties without revealing sensitive data. For
example, credit card companies can partner with banks or merchants to execute
common programs to identify fraudulent transactions by analyzing patterns across
multiple databases.

Privacy-preserving machine learning: The FairRISCV processor can be used to train
machine learning models on sensitive data without revealing the underlying data to any

party. This allows for privacy-preserving machine learning, which is important in
applications such as healthcare and finance.

Auctions: The FairRISCV processor can be used to enable secure and fair auctions
without revealing sensitive bidding information. This allows for trust in online auctions,
where bidders are not known to each other.

Supply chain management: The FairRISCV processor can be used to enable secure
collaboration between multiple parties in a supply chain, without revealing sensitive data.
For example, suppliers and manufacturers can jointly execute programs to collaborate on
production schedules and inventory management, without revealing trade secrets or
other confidential information.

Fairgate Technology Suite

Fairgate has specialized in solving the Fair Exchange Problem in numerous real-world use
cases with its FairRISCV technology. A new FairTrade extension protocol allows users to
atomically trade secrets with proven properties for cryptocurrency payments in a fully
malicious-party protected setting. The secrets traded can be code vulnerabilities, MEV
arbitrage opportunities, scientific discoveries, solutions to well-stated problems. The
valuable properties of the secrets are tested by the FairRISCV program, so no action is
performed unless the traded information is indeed valuable.

In the following sections we’ll introduce the FairRISCV processor and the FairTrade
protocol extension enabling a Fair Exchange of high-value assets. Fairgate is committed
to use state-of-the-art advances on multiparty computation and zero knowledge
systems, always with a pragmatic approach.

FairRISCV

To achieve fast program execution over MPC, we’ve developed an e�cient RISC-V
processor based on Yao’s protocol that uses logic gates. Our processor makes combined

use of the state-of-the-art MPC optimization techniques such as FreeXOR, Half-Gates,
Row-reduction and RAM consistency. Fairgate has a roadmap of optimizations for the
FairRISCV processor to improve bandwidth usage and reduce communication latency to
take the MPC from theory to practice. Our roadmap includes using mixed logic and
algebraic systems, implementing a FairRISCV circuit compiler, a custom MPC-optimized
MAC for encrypted-memory consistency, and more.

Main features of the FairRISCV processor:

● Standard. Executes o�-the-shelf RISC-V binary code between two parties in a
semi-honest setting.

● Mobile-ready. Runs on low-end devices such as mobile phones or standard
laptops.

● Tuneable. Easily fine-tuning security thresholds for maximum performance in
specific use-cases.

● Logic-circuit optimized. The processor is implemented on a boolean circuit that
is e�ciently executed using Yao's protocol and later improvements..

● Parallelizable. The FairRISCV processor can be parallelized to take advantage of
multi-core CPUs, SIMD CPU-extensions, the AES-NI opcode or GPUs.

● Memory-optimized. Memory usage can also have a significant impact on
performance. Data structures and algorithms are chosen to minimize memory
usage and reduce the number of memory accesses.

● Encrypted RAM. Support for private and encrypted RAM memory spaces.
● Instruction Packets. By splitting the processor execution in constant-step circuit

packages, we’re able to provide execution building blocks on-demand, reducing
network bandwidth utilization.

● Parallel gable circuit generation. The packaging of instructions in stand-alone
circuits enables the generation of packets in parallel, and the preprocessing and
caching of circuits for future use.

● Private-free and Secret CPU Register modes. The processor can work in the
so-called privacy-free mode, where the prover knows all the processor registers
contents, or in secret mode, where neither the prover nor the verifier know the
register contents. The former mode produces circuits that are half as long as the
later on average. The processor also supports the single-secret mode (explained in
the FairTrade section), where the verifier hides a single secret, and this secret is
only revealed as the last step of the circuit execution.

● Multi-Core systems with inter-core communication channels. Our
architecture enables parallel execution of several FairRiscV cores while providing
privacy-free or secret communication channels between the cores. This allows the
simulation of multi-core systems or independent agents. In the context of
blockchains, this enables the proving of properties of contracts running in
separate blockchains, communicating through bridges.

The FairRiscV processor supports the use of three concurrent address spaces:
●

https://www.iacr.org/archive/eurocrypt2015/90560204/90560204.pdf
https://www.iacr.org/archive/eurocrypt2015/90560204/90560204.pdf

● Privacy-free RAM: Both the addresses accessed by the opcodes and the
contents of each memory cell are known to the prover at all times, but not to the
verifier. This mode is ideal if the core is running in the privacy-free mode.

● Encrypted-content RAM: The content of each memory cell is unknown to both
the prover and the verifier, but the addresses accessed by the code are known to
the verifier (but not the prover). This mode is ideal if the core is running in secret
mode, but the memory access pattern is predictable. It is common that certain
algorithms can be implemented in a way that is address-pattern invariant.
Sometimes cryptographic code is already address-pattern invariant when it needs
to be protected from side-channels that exploit cache-misses, memory
misalignment delays or electromagnetic emission patterns when accessing
di�erent RAM banks.

● Encrypted-bus (oblivious) RAM : Both the addresses accessed and the content
of the RAM at those addresses is unknown to both parties.

For each use case, the processor can be instantiated with one or several of these
memory spaces. When using only private RAM, it is possible to instruct the processor to
store certain secrets in processor registers, providing a fast encrypted-content RAM for
short secrets.

CPU Design

The CPU consists of the R registers, input multiplexers, a simple ALU, the branch logic, the
output multiplexers and the buses that connect outputs with memory, the program
counter and back to the R registers.
The input multiplexer that choses a register based on the rs1 field of the opcode. All ALU
circuits are executed, although short-circuit and lazy evaluation allows unused gates to
remain unevaluated, reducing the CPU load. Output multiplexers choose which result
must be written back to the R registers based on the opcode defined by the func3 field.
Instructions are fetched from RAM, together with 2 other RAM arguments, corresponding
to consecutive RAM words, which enables RAM access to unaligned words. Each
instruction also produces an output that is either stored in a register, or stored back in
RAM. To implement the integer division opcodes, an output witness is used, and the
processor only needs to check for the correctness of the multiplication.

https://www.iacr.org/archive/eurocrypt2015/90560204/90560204.pdf

To execute multiple sequential instructions of the processor, the instructions are unrolled
and each instruction gets a di�erent garbled circuit. A sample execution transcript is
shown in the following diagram.

The transcript is compiled into a new Fair Circuit File Format (FACIR), similar to
existing circuit formats such as Bristol or Fuse. When the processor is run in privacy-free
or single-secret modes, the circuit file is augmented with meta-conditionals over wire

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://eprint.iacr.org/2023/563.pdf

states that allow skipping the evaluation of circuit components that are unused in a
certain instruction cycle. The Fairgate circuit compiler performs a dependency analysis,
reorder gates and inserts the conditionals in optimal positions to provide this
functionality. The optimization reduces CPU usage, and could be paired with stacked
garbling to also reduce bandwidth consumption.

We estimate that the performance of the FairRiscV can reach 1000 instructions/second
when run in privacy-free or single-secret modes, on a standard laptop, using a single
thread and taking advantage of the aforementioned optimizations.

FairRiscV running Virtual Machines

The FairRiscV processor can run other virtual machines by executing the VMs compiled
code. For example, to execute EVM payload and check predicates about the EVM state in
zero knowledge, we run a SputnikVM instance over the FairRiscV processor, and feed the
SputnikVM with the blockchain state, a secret EVM transaction and other auxiliary
secrets. This way we can prove properties of the transaction running on the simulated
EVM.

The virtualization can also involve emulating third parties whose signing private keys are
unknown to the prover, or contracts that have been tweaked to simulate uncommon or
future scenarios. Using these tweaks, it’s possible to emulate scenarios where the parties
do not control all the keys, and third parties interact with the contracts in predefined
ways, such as multi-party bridges.

Three methods are provided to this end:

● ECRECOVER opcode selective-bypass. The ECDSA EC public key recovery can
be altered to recover certain public keys on predefined signatures. The

https://eprint.iacr.org/2020/136.pdf
https://eprint.iacr.org/2020/136.pdf

selective-bypass mechanism can be applied under restrictive conditions (i.e.
enabled in certain contracts, or at a specific instruction pointer).

● State replacement. The parties involved in the protocol can agree to replace
certain parts of the state with data of their choosing. For example, multi-party
wallets can be emulated so that the existing public keys are replaced with dummy
publica keys. It also allows us to replace the code of specific contracts. For
example, the owner of a contract can be modified, or the BLS public key stored in
a contract that verifies BLS signatures can be tweaked to verify signatures for a
simulated entity.

●
● Third-party transaction injection. The elliptic curve public key recovery method

used to check the origin of a transaction can also be tweaked to enable the
mapping of fake signatures into predefined account sources.

FairTrade

The FairTrade protocol enables two parties, Alice and Bob, to atomically exchange a
secret (provided by Alice) for an on-chain cryptocurrency payment (provided by Bob) on
a Smart contract platform such as Ethereum or Rootstock. The properties of the payment
will be visible to Alice before the trade, while Bob’s secret will only be revealed to Alice
after the trade is successful. Accordingly, if the trade is successful the payment to Bob
will be visible and transparent on the blockchain, while neither the secret nor the
encrypted secret will, providing perfect secrecy.

The secret to be exchanged is verified so that the monetary transaction can only occur if
the revealed secret has the desired properties. These properties are described by a simple
algorithmic predicate. We give examples of useful predicates:

● Given a supposedly secure program, find a certain input that produces an
anomalous end state. The prover can be paid a bug bounty for the discovery of
that input.

● Given the state of several order books, detect a certain high revenue arbitration
opportunity. The prover can be paid in proportion to the trade found.

● Given a certain AI neural network, detect an input that produces a dangerous,
anomalous or biased response. The prover can be paid for searching and finding
those edge cases.

To verify the predicate without accidentally revealing Alice’s secret, the predicate is
evaluated on the FairRISCV processor. Alice acts as the MPC prover and Bob as the
verifier. To be able to prove the validity of the predicate e�ciently, the FairTrade protocol

runs the FairRiscV processor in semi-honest single-secret mode. In this mode, the
processor is run in privacy-free mode, with the exception of the final gate computed,
which reveals a single secret provided by the Verifier, and the revealed secret can be used
by the prover to unlock the payment.

Main features of the FairTrade system:

● Full validation. Validate the quality and properties of the prover’s secret
information before trading.

● Variable payments. Pay for the information in cryptocurrency (including
stablecoins, or any kind of digital asset controlled by smart contracts). Payment
amount and related options can be algorithmically selected. For example, the
payment amount can depend on secret information properties.

● Fast. Fair exchange can be accomplished in minutes, not hours, which makes it
ideal for time-sensitive trades

● Privacy-friendly.The FairTrade system is ideal for non-delegable proofs, such as
sensitive multi-million dollar vulnerability exploits.

● Control. Pair the fair trade with any on-chain action, such as executing specific
smart-contract method calls.

The following diagram depicts the FairTrade process:

The Protocol is defined as follows:

Notation

● EK(M) a block cipher encryption function, and let DK (M) be the associated
decryption function.

● Hash(M) a cryptographically secure Hash function
● Sign(M,K) a digital signature of message M with private key K.
● Garble(V) is an algorithm to encrypt the circuit V suitable to be executed in the

MPC protocol. The encryption uses a one-time private key (omitted for clarity).

Participants

● Alice is the Verifier. Alice creates the garbled circuit.
● Bob is the Prover, receives Garble(V) from Alice and executes the circuit.

Initial Setup

1. The Verifier (Bob) locks funds to be available for trading in a Fair Exchange smart
Contract (FEC). The verifier, who owns a private key Z, registers his public key Zpub

in the FEC, to be used later for signature verification.
2. The verifier makes the FEC address public
3. The Verifier generally establishes first the detection predicate, which is also made

public. The Detection Predicate establishes the conditions in which the FEC would
pay the locked amount to anyone acting as Alice.

4. The Verifier creates and publishes the VM public package, which contains the
FairRiscV processor circuit generator and the program that the processor will
execute, together with the detection predicate. The Verifier can o�er several
detection predicates (associated with di�erent payment amounts).

Trade Protocol

Step 1

1. The Prover (Alice) poses a secret W that has some specific properties that can be
verified in the MPC process.

2. The Prover creates a random one-time key K.
3. The Prover encrypt the secret W with the one-time key K, creating C = EK(T)
4. The Prover hashes the key K, creating H =H(K)
5. The Prover chooses an on-chain payment address A to receive the payment in

exchange for the secret.
6. The Prover shares C (the encrypted secret), H (a commitment to the key) and A

(the address) with the Prover.

Step 2

1. The Verifier chooses a one-time random key Q that will be used for symmetric
encryption.

2. The Verifier chooses the Payment command identifier D, and associates it with
the hashed key H and Alice’s address A, forming a payment command message
M. The payment command message instructs the FEC to perform the payment.
The fields H and A will be part of the command arguments. The condition for the
payment is that the preimage of H is algo given. For example, the full message M
can be an EIP-712-compatible message such as
performPaymentGivenPreimage(A,H). We do not restrict the message format
here, and we simply specify it M = D | A | H. Note that the message M cannot be
an EVM transaction with a Solidity ABI-encoded method call since an EVM
transaction could be easily front-runned by Bob by reusing the nonce, canceling
the payment. Note that M is an unsigned message, so it is useless without Bob's
signature.

3. The Verifier computes a signature on the message M with his private key Z, as S =
Sign(Z,M). This signature S, together with the message M and a preimage of H will
be enough to trigger the payment.

4. The Verifier computes an encrypted signature P, as P = EQ(S).
5. The Verifier (Bob) generates G = Garble(V), an encrypted version of the FairRISCV

processor circuit. The garbled circuit will contain an encrypted copy of Bob's
secret key Q.

6. The Verifier shares M (the payment command), P (the encrypted signature) and G
(the garbled circuit) with the Prover.

Step 3

Now both the Prover and the Verifier are ready to perform the MPC.

1. The Verifier provides his secret input W to the circuit by performing an
oblivious-transfer with the Prover.

2. The Prover provides his secret input Q by embedding it directly into the garbled
circuit G, so this does not require further actions.

3. The Prover evaluates the garbled circuit privately and, if his secret W possesses
the conditions specified by the detection predicate, he obtains Q

Step 4

1. The Verifier is able to recover the signature S by performing S = DQ(P)
2. If the signature is invalid, it aborts the protocol.
3. The Verifier builds a message T1 containing Bob’s message M, S (the signature for

M). We set T1 = M|S (we leave the actual payload format unspecified)
4. The Veirifer sends T1 as a payload in an on-chain transaction having the FEC

address as recipient.
5. The FEC contract receives the message, and verifies the signature, and locks the

funds to be paid to the verifier for a period.
6. The verifier waits until transaction T1 has many confirmations.

https://eips.ethereum.org/EIPS/eip-712

7. The Verifier builds T2 containing K (the preimage that enables the command). we
note it simply T2 = K.

8. The Verifier sends T2 to the FEC.

Step 5

1. The FEC receives T1 and unpacks all its fields: M, D, A, H, S.
2. The FEC verifies the signature S over the message M.
3. The FEC locks the funds for the payment for a period of time. No other party is

able to propose a T1or T2 message during this period.
4. The FEC receives T2 from the same party and unpacks K.
5. The FEC verifies that H == Hash(K). If not, then it aborts.
6. The FEC unlocks the funds and performs the payment according to the command

D, to the address A.
7. Optionally, the FEC can perform other on-chain actions specified by D.

Step 6

1. The Prover learns K from the EVM transaction while it is on the memory pool or
when it is executed on-chain.

2. The Prover contains the secret W by decrypting C with the key K, performing W=
DK(C)

Case studies

The applications of the FairRISCV processor and the FairTrade protocol are endless.
We’ve selected two initial problems in billion dollar markets that lack satisfactory
solutions where the FairRISCV/FairTrade suite of products is a great fit.

Vulnerability Vault

The decentralized finance (DeFi) ecosystem has seen an explosion in growth and interest
in recent years, with developers and users flocking to the technology to take advantage
of its promise of trustless and automated financial services. However, the rapid growth of
the DeFi space has also put it at risk of security vulnerabilities, with millions of dollars of
users' funds being stolen in the past few years.

DeFi applications and smart contracts are vulnerable to security exploits due to the
nature of their underlying blockchain technology, as well as a lack of proper security
measures. In particular, the combination of complex smart contract code and the
decentralized nature of the blockchain makes it di�cult to identify and address security
flaws before they are exploited. Additionally, the speed of the development process in the
DeFi space often results in security vulnerabilities being overlooked or underestimated.

Bug bounty programs are a popular method for identifying security vulnerabilities in DeFi
applications and smart contracts, as they allow users and developers to report security
issues in return for monetary rewards. While these programs can be e�ective in finding
and fixing security vulnerabilities, there is often an issue with the amount of reward
o�ered for successful disclosures. Recent research shows that, for the vast majority of
value locked in DeFi protocols, the bug bounty rewards o�ered are too low to properly
incentivize responsible disclosure. There are several factors that contribute to the current
alarming situation:

● Financial attacks (i.e. price manipulation using flash loans) are considered a legal
gray area by some security researchers, who lack any experience in financial
markets regulation.

● Bug exploits are also considered a gray area by “code is law” maximalists.
● Due to the ease to get hold of misappropriated digital assets, legitimate security

researchers are incentivized to turn into malicious actors
● The decentralized nature of the blockchain means that malicious actors can often

steal crypto assets, move them quickly across protocols and bridges, mix them
with legitimate assets, and cash out while remaining undetected. Therefore these
actors are not well incentivized to consider the bounty as a rational choice to
avoid the legal risks of stealing and the cost of money laundering.

Additionally, communications between the security researchers and the protocol
development team are often distrustful. The researcher doesn’t want to disclose all the
information until having an assurance that a fair bug bounty will be paid for his work, and
the development team doesn’t want to commit to a specific amount without fully
understanding the severity of the vulnerability reported. While slow negotiations take
place, the smart contracts are still vulnerable and other malicious parties can steal the
funds at risk. This is a specially high risk for DAOs controlling smart contracts as
pseudonymous insiders can access the vulnerability report before the contract code is
patched and steal the crypto assets front-running the development team.

Overall, the security vulnerability landscape in the DeFi ecosystem is a serious problem
that cannot be solved by existing security solutions alone. Bug bounty programs should
be encouraged and properly incentivized in order to ensure that legitimate security
researchers are properly rewarded for their work.

Fairgate Vulnerability Vault (FVV) is a native solution to handle the reporting and
upgrading of smart contract vulnerabilities while protecting the funds exposed and
securing an adequate reward to the researcher who found the problem.

VV significantly increases the trust between the security researcher and the DeFi protocol
development team by providing a methodology to follow and the tools they need to
successfully satisfy all the parties involved.
The FVV product bases its security in the FairTrade protocol and the FairRiscV processor.
The researcher takes the role of the FairTrade prover, while the DeFi development team
takes the role of the verifier. Together, they achieve a peer to peer secure simultaneous
exchange of secrets. The predicate checked in the FairTrade protocol is the condition that
the safety of the funds in the DeFi contract has been broken. For example, the predicate
can check if the balance of all user’s deposits does not match the actual balance of the
DeFi contract. The predicate may also detect state incongruences, or highly outliers in
oracle prices, and provide di�erent bounty amounts in each case. The FVV protocol
allows the following operations occur atomically:

● The researcher discloses the vulnerability to the development team
● The development team pays a fair bug bounty to the researcher
● The vulnerable smart contracts are automatically paused.

The fact that the smart contracts are automatically paused prevents the race-condition
where a malicious researcher receives the bounty but immediately sells the vulnerability in
the black market, making the highest damage to the protocol without personal risks. It
also prevents the problem of inside jobs by pseudonymous remote code developers that
often participate in DeFi teams. This is specially important for DAOs who may become
legally liable for anything happening with the funds at risk after a vulnerability report.

The FVV is an instantiation of the FairTrade protocol, so it’s a two-stage protocol. After
the first stage is completed, the researcher receives a secret key that can be used to
trigger the atomic exchange of secrets on chain. Also, even before the on-chain part of
the protocol, the researcher is able to convince the development team of the existence of
the vulnerability by showing a cryptographic hash of the key.

After the smart-contract fix is ready, the funds can be transferred back to the upgraded
contract.

To summarize, FVV provides:

● A set of smart-contracts to facilitate secure and responsible vulnerability
disclosure and bounty payments.

● An open-source toolbox for Security Researchers to privately simulate and then
handle the vulnerability disclosure process securely and atomically

● Consulting services for companies that wish to define specific vulnerability
predicates to narrow or adapt the scope of bug bounty conditions.

● A legal framework to protect the researcher and the DeFi development team
● Technical advise on the vulnerability fix and its deployment

MEV Matcher

Blockchains work by creating blocks, which are published by proposers and consist of a
list of user-generated transactions that are executed in order. However, the ability of
proposers to change the order, censor or selectively add transactions has led to the rise
of a MEV extraction industry. In this industry, users pay money to searchers, builders and
proposers who specialize in extracting value, building profitable blocks and earning fees
for block inclusion. Flashbots aims to reshape this value extraction industry such that it
benefits users through chargebacks or revenue sharing. One particular link in the
flashbots value-extraction chain is the interaction between the user and the searcher. The
user wants to keep their transaction confidential from the searcher, usually a DEX trade,
and also the searcher wants to keep their arbitrage search strategy confidential from the
user as well as the builder. One particular strategy is backrunning, which allows for
e�cient arbitrage and liquidations after a user transaction without negatively impacting
the user. Both the user and the searcher can profit from creating a backrunning
transaction. This win-win situation calls for a protocol that can ensure confidentiality until
a backrunning extraction opportunity is found and the revenue is fairly shared between
the user and the searcher. The problem has been clearly presented in the recent Flashbots
article. The article presents a simplified use case with only these two parties, and
restricted trade and arbitrage primitives. We tackle the problem in a more realistic
scenario and we are able to prove arbitrage and reveal a key that enables the user to
claim for a reimbursement. A more advanced setup could enable the secret encryption of
the user’s transaction and the backrunning transaction to be delivered to the bundler,
where the encryption is a hybrid public-key, symmetric key scheme.

The FairRiscV processor together with the FairTrade protocol can provide a solution to
this particular problem with a realistic resource footprint. To make the solution e�cient
without requiring more expensive MPC protocols, we run our FairRiscV processor twice,
using opposite prover-verification roles, and we use a commit-reveal scheme to compare
results before revealing any output to the other party. Since the user reveals his
commitment first, we tolerate a 1-bit selective abort leakage of the user transaction
(which is ephemeral), while we do not leak anything from the searcher strategy. The 1-bit
leakage means that a malicious searcher may learn, for example, if a certain token was
bought, but neither in which DEX pool, nor the amount. A malicious searcher can
potentially learn the answer of a single yes/no question.

To perform public key and symmetric encryption with the FairRiscV processor we can
either use the Risc V internal registers as temporary storage (running the processor in
secret mode) or we can use an external encrypted RAM. The ephemeral key required for

https://writings.flashbots.net/backrunning-private-txs-MPC

ECIES encryption is created using a seed built from secret entropy in inputs provided by
the parties.

Common knowledge:
● The bundler 's public key.

User secret inputs:
● Entropy EU

● The target transaction T.

Searcher secret inputs:
● Entropy ES

● A program that codifies a strategy for searching for arbitrage opportunities.

MPC Processing:
● Execute user’s transaction on supplied state
● Search for arbitrage opportunity
● Compute cashback based on revenue-sharing contract.
● Creation of an arbitrage transaction with cashback.
● ECIES-Encrypt both transactions with the bundler's public key.

Execution Output:
● ECIES-Encrypted transactions.

Multiparty Cryptocurrency Custody

MPC (multi-party computation) is considered the next generation of private key security.
The FairRiscV processor can provide multi-party signing of ECDSA, EdDSA, Schnorr, BLS
or even post-quantum signatures by removing the concept of a single private key; such a
key is never gathered as a whole, neither during the first creation of the wallet nor during
the actual signature. We developed a FairRiscV two-party protocol where both
participants can enforce security policies based on amounts transacted, destination
addresses, rate limits, contract calls, allowances and tokens accessed. In practice, one
endpoint is a custodian, while the other endpoint is the user’s wallet, each one holding
only a share of the private key.-
During preparation, the endpoints engage in a decentralized wallet creation protocol in
which they compute the public key (wallet address) that corresponds to the set
of individual private shares. When a signature on a blockchain transaction is requested
both endpoints engage in a distributed signature process where each endpoint
individually validates the transaction request and the spending policy and together they
cooperate to sign the transaction.

https://www.fireblocks.com/blog/7-reasons-why-mpc-is-the-next-generation-of-private-key-security/

[1]
https://www.gartner.com/en/newsroom/press-releases/2022-05-31-gartner-identifies-to
p-five-trends-in-privacy-through-2024

[2]
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-th
e-top-strategic-technology-trends-for-2021

https://www.gartner.com/en/newsroom/press-releases/2022-05-31-gartner-identifies-top-five-trends-in-privacy-through-2024
https://www.gartner.com/en/newsroom/press-releases/2022-05-31-gartner-identifies-top-five-trends-in-privacy-through-2024

